Next Generation Technologies for Utility DSM Programs

David Podorson

Utility Energy Forum May, 2014

www.esource.com

Variable Frequency Drives for Rooftop Units - Ready for Prime Time

Single Zone RTUs are UNINTELLIGENT Machines

- One zone
- Fixed fan speed
- Fan either on or off
- Ventilation kept at 100% when building is occupied

Single Zone Rooftop Units are EVERYWHERE

- About 50% of all commercial buildings have RTUs installed
- If half of those were retrofitted, would be equivalent to removing 70 coal powered power plants

RTU Variable-Frequency Drive Retrofit Devices

Catalyst

Transformative Wave Technologies

Enerfit
 <u>Enerfit LLC</u>

Source: Transformative Wave Technologies

Source: Enerfit

Digi-RTU Optimizer
 <u>Bes-Tech</u> (DTL Controls)

Source: Bes-Tech

Different Strokes for Different Folks

Product	VFD evaporator fan	VFD compressor	VFD type	Damper for coil 2
Catalyst	✓		Indexed	
Enerfit	✓		Continuous	\checkmark
Digi-RTU	\checkmark	✓	Continuous	

Note: VFD = variable-frequency drive.

© E Source

Source: Wikimedia Commons

Source: Enerfit

All Provide Additional Features

- Demand-controlled ventilation
- Integrated economizer control
- Web control and monitoring
- Fault detection and diagnostics

Newest Results Continue to be Positive - PNNL Study

- PNNL Study published July 2013:
 - 66 Catalyst units
 - 8 different buildings (retail, shopping mall, office, food sales, healthcare)
 - 4 climate zones (warm coastal, mixed humid, mixed marine, cool moist)
- Average savings of 57%!
- Mostly due to fan energy savings when in ventilation only mode
- Average simple payback of 3 years at \$0.10/kWh

Newest Results Continue to be Positive – SDG&E Study

- SDG&E Study published November 2013:
 - 2 different manufacturers kept anonymous
 - 1 installation per manufacturer
 - 1 building in San Diego, CA

Device	Variable Speed Evaporator Fan	Variable Speed Compressor	Demand Controlled Ventilation (DCV)	Economizer controls	Fault Detection and Diagnostics (FDD)	Savings
Unit 1	\checkmark	\checkmark				27%
Unit 2	\checkmark		\checkmark	\checkmark	Some	26%

In Addition to Energy Efficiency

Fault Detection and Diagnostics

Unit03 Health Status

Drive Communication	
Drive Fault	
Fan Run	
Fan Belt	
Heating Fail	•
Cooling Fail	
Damper Fail	
Space Sensor	
Supply Sensor	
Return Sensor	
OSA Sensor	
CO2 Sensor	
Service Off	

Courtesy: Transformative Wave Technologies

System Monitoring

	72.0 Clear	0°F							Sc 7111	Cottsd	ale o Blvd.										?
Unit Name	Serves	Comm	Mode	e Health	n Occ	Fan Call	Comfort Status	Space Temp	Actual Heat S/P	Actual Cool S/P	Fan Status	Fan Speed	Fan Power	Coolin 1	ng H 2	leating 1 2	Supply	Return	OSA	CO2	OSA Volume
Unit01	Sales Seafood	il.	Θ	4	0	0		71.6 °F	70 °F	73 °F	0	40 %	0.34 kW	00		00	80.3 °F	77.5 °F	87.9 °F	446 ppm	
🕽 Unit02	Main Sales Cntr	1	Θ	4	0	0		72.3 °F	70 °F	73 °F	0	40 %	0.33 kW	00) (80.7 °F	77.8 °F	88.7 °F	450 ppm	21
Unit03	Sales Tapas	- The	Θ		0	0		72.8 °F	70 °F	73 °F	0	40 %	0.36 kW	00		00	79.7 °F	76.7 °F	88.0 °F	473 ppm	
🕽 Unit04	Loading Dock	1	\odot		0	0		70.3 °F	68 °F	71 °F	0	90 %	1.80 kW	00			53.0 °F	72.1 °F	84.2 °F	412 ppm	(2 1
🕽 Unit05	Food Prep	The second	Θ		0	0		71.0 °F	68 °F	71 °F	0	40 %	0.13 kW	00		00	82.7 °F	77.8 °F	82.7 °F	392 ppm	
🕽 Unit06	Checkstands		\odot		0	0		70.6 °F	68 °F	73 °F	0	40 %	0.14 kW	00		00	82.8 °F	78.1 °F	80.3 °F	442 ppm	25
Unit07	Bakery	1	Θ		0	0		71.5 °F	68 °F	71 °F	•	40 %	0.14 kW	00		00	81.4 °F	77.6 °F	80.6 °F	472 ppm	
Unit08	Vestibule	1	\odot	4	0	۲		74.0 °F	68 °F	71 °F	0	90 %	0.84 kW	0		00	45.2 °F	74.0 °F	82.4 °F	1	20
Unit09	Produce	(III-	Θ	0	0	0	O	72.3 °F	68 °F	71 °F	0	90 %	0.46 kW	00			46.3 °F	76.8 °F	47.6 °F	443 ppm	
	Site Data			S; Hu	bace midity	,	Space H Setp	umidity oint	Dehum Coo	nidificatio I Reheat	n De	humidifi	cation Su	Dehum Spe	nidifi eed S	cation Setpoir	Fan Spac nt Dewp	ce oint			
	OCA Humidity	U	nit01	31	.3 %	RH	50.0)%	0						80.	0 %	39.7	٩F			
		U	nit02	28	.8 %	RH	50.0)%	0	0					80.	0 %	38.1	۰F			
	20.5 %KH	U	nit03	35	.7 %	RH	50.0)%		0					80.	0 %	44.7	۰F			
	OSA Dewpoint	U	nit04				-		-	-					i.	•					
	39.4 °F	U	nit05				-			-											
		U	nit06	34	.4 %	RH	50.0)%	0	0		55.0	°F		75.	0 %	41.3	٩F			
	Space Static	U	nit07	34	9 %	RH	50.0)%	0			55.0	٩F		75.	0 %	42.5	۰F			

.

55.0 °F

Courtesy: Transformative Wave Technologies

41.4 °F

-

75.0 %

0.02 in/wc

Unit08

Unit09

32.7 %RH

50.0 %

VFD Retrofit Devices Ready for Prime Time

- Proven, significant savings
- Units that modulate the compressor have not been shown to be any more effective than fan speed modulation

Gas "Combi" Systems

www.esource.com

Combination Space & Water Heating

How it Works – One Example

Other Configurations

Works Best With...

- New construction
- Homes with relatively low heating requirements
 - Tightly sealed and/or weatherized
 - Smaller size
- Matched components that are sized correctly
 - Air handlers should be optimized to ensure condensing operation
 - Tankless water heaters better suited for forced air situations
 - Boilers better suited for hydronic systems
 - Low heat hydronic (radiant flooring, new low heat radiators) especially well suited

Why do we care?

- The Center for Energy and the Environment installed 15 combo systems in low income weatherized homes in Minnesota
- Replaced storage water heaters (EF ≈ 60%) and gas furnaces (AFUE ≈ 80%)

System Type	Efficiency Increase	Gas Savings
Storage Water Heater	19%	22%
Tankless Water Heater	16%	18%
Hybrid Water Heater	21%	24%
Boiler	16%	20%

Why do we care (Cont'd)?

- Gas Technology Institute (GTI) modeled whole-home energy savings for tankless combi systems at 95% EF
- Baseline homes based on Building America prototype homes

	Whole Home Energy Savings (%)								
	Home Built Before 2000	Home Built to 2010 Standards	Home Built with Better Efficiency than 2010 Standards						
Chicago	9	9	12						
Atlanta	9	10	11						
Houston	7	8	9						
Phoenix	5	6	7						

Installed Costs from CEE Study

NREL/GTI Research Findings

Storage

- Supplies more-stable water temperatures during short draws
- Delivered varying water temp for long draws due to stratification within tank
- Relatively high standby losses

Hybrid

 Often delivers the best of both worlds

Tankless

- Low standby losses
- May suffer from water temperature fluctuations during short draws
- Provides more-stable temperatures during long draws
- In GTI field tests, consistently provided higher efficiencies than storage systems when return water temperatures enabled condensing operation

For More Information

- See our report <u>Combining Space and Water Heating</u> (2014)
- Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating (2013), U.S. DOE
- <u>Residential Space and Water Heating: The</u> <u>Combined Approach</u> (2012), Center for Energy and the Environment
- Tech Roundup December 2010, E Source
- Integrated Heat Pumps for Combined Space
 Conditioning and Water Heating, Oak Ridge National Laboratory

LED Tubes Coming of Age

Fluorescents Everywhere – What's an Energy Geek to Do?

Troffers are the most common fluorescent fixture:

- Operate 10.5 hours/day
- Contribute to peak load
- Draw 25 to 113 watts
- Millions of installed fixtures
- 42 percent of lighting energy
- ~87 terawatt-hours per year

LED Replacement Tubes - What We've Been Waiting For?

Philips InstantFit LED CREE T8 replacement LED

- Fit in T8 sockets; uses existing instantstart EB
- Safety issues have been addressed
- Come from major vendors
- Competitive on efficiency and quality

Supported by new DOE study: <u>http://apps1.eere.energy.gov/buildings/publications</u> /pdfs/ssl/caliper_21_t8.pdf

Source: Philips

Comparing Fluorescent T8 with InstantFit and CREE

Property	High performance T8	InstantFit LED	CREE
CRI	80s	83	90
Life, hrs	24,000-75,000	40,000	50,000
Efficacy, Im/W	98	95-116	100
Cost, \$	5	24-39	≈30

Note: different definitions of "life" for LEDs, fluorescents

For Now, LED Troffers Still Better Than LED Replacement Tubes

- Better efficacy than LED replacement tubes (and fluorescents)
- Better light distribution
- Better heat dissipation
- Supported by DOE study: http://apps1.eere.energy.gov/buildi ngs/publications/pdfs/ssl/caliper_re cessed-troffer_2013.pdf

Samples from the QPL

Brand Name	Model	Luminaire efficacy (Im/W)	Rated lifetime (hours)	Measured CRI
Lithonia Lighting	2RTL	104	60,000	81
CREE LED Lighting	CR24	130	>51,000	92
Finelite Inc.	HPR	96	100,000	87
Hubbell/Columbia	LEPC	108	50,000	83
Fluorescent—top 25 percent		>74.0	40,000+	85.0

Note: CRI = color rendering index.

© E Source

Other manufacturers include GE (Lumination), Philips (Daybrite), Cooper Lighting, Maxlite, Albeo, and Lunera

A Cool New Way to Use Hot Oil

www.esource.com

The Problem - Data Centers use tons of energy

- 1.5% of all energy worldwide consumed by datacenters
- Worldwide, datacenters use about 30 GW of electricity, roughly equivalent to the output of 30 nuclear power plants

Traditional Data Center Cooling

- Air cooling: 0-10 kW/rack
- Chilled rack "in-row" cooling: 10-30 kW/rack

Source: Pacific Gas & Electric Company

Newest Solution for Data Center Cooling...

Source: Green **Revolution Cooling**

How it Works

Savings Potential is Huge

- Manufacturer claims:
 - Reduce data center cooling power by up to 95%
 - Reduce data center build-out costs by up to 60%
 - Reduce total data center power by up to 50% ongoing
- PG&E study: <u>Submersion Cooling Evaluation</u> (2014)
 - Savings of 82% across the board (energy, demand, and annual cost)
 - Simple Payback < 5 yrs</p>

Market Barriers

- Requires the use of solid state drives
- No "off the shelf" products currently available
- Warranty issues
- Network gear manufacturers are lagging behind server manufacturers
- Cost
- Site plumbing issues

For More Information

David Podorson <u>David_Podorson@esource.com</u> (303) 345-9103