

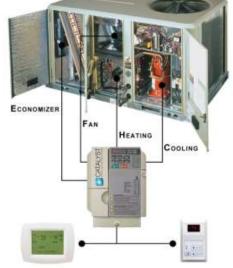
Technology View Smart Internet Connected Controls and Variable Capacity Heat Pumps *New technologies need new M&V*

Jack Callahan, P.E., CMVP Senior Engineer Bonneville Power Administration May 16th, 2014

Presentation Outline

- 1. Smart Connected Devices
 - Technology
 - M&V

3. New Japanese HVAC Technology


- Technology
- M&V

VRF Systems

Ductless Heat Pump

EXISTING THERMOSTAT OR BMS CONTROLLER of Catalyor

Smart Connected Devices

- Low cost, high resolution, real-time, large scale performance data.
- Feedback used by manufacturers and providers for performance improvements.

Smart Thermostats

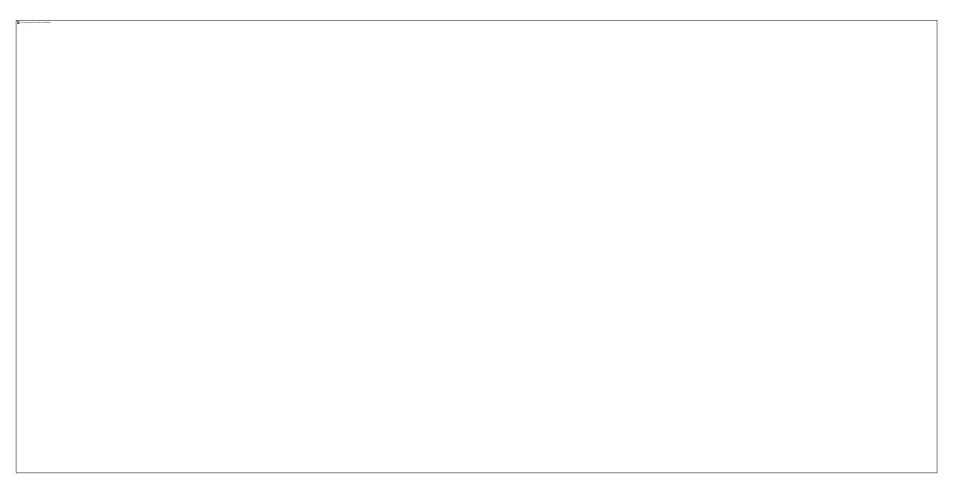
The Hype

Intelligent, Internet connected thermostats promise deeper and more persistent energy savings.

...but will these savings occur in the real world? ...and how will we know?

The Hope

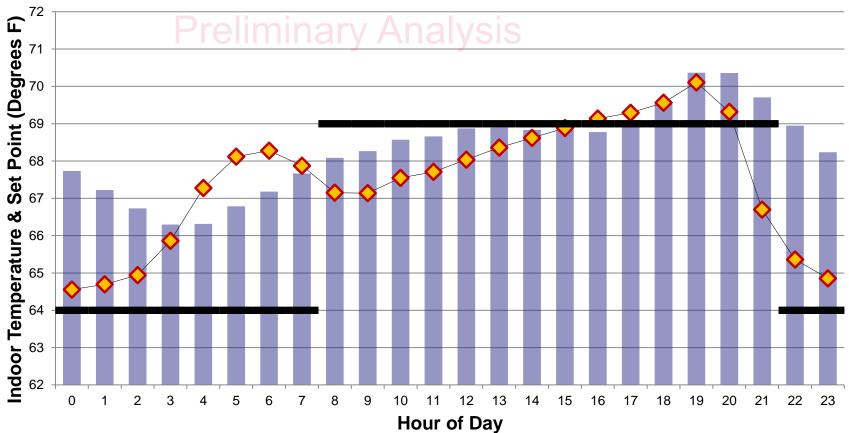
M&V Challenges for Smart Connected Devices


- Software-based performance
- Rapid improvement and update cycles
- Relatively small savings controls and behavior
- Challenges to EM&V approaches that rely on:
 - large scale end-use or billing-analysis field studies
 - Product specs with deemed-savings
- Need faster timelines and lower costs
- Need ongoing performance monitoring

Proposed M&V Approach for Smart Connected Devices

Leverage low cost, high resolution, large scale performance data.

- 1. Establish standard ways to access and aggregate data from various vendors.
- 2. Develop M&V techniques utilizing vendor supplied data.
- 3. Verify performance with active monitoring of groups of installed smart thermostats


Single Home Hourly Time Series Thermostat Data

Aggregated Thermostat Data

for 900 networked thermostats in the Pacific Northwest by hour of day, 2/1/14 to 2/28/14

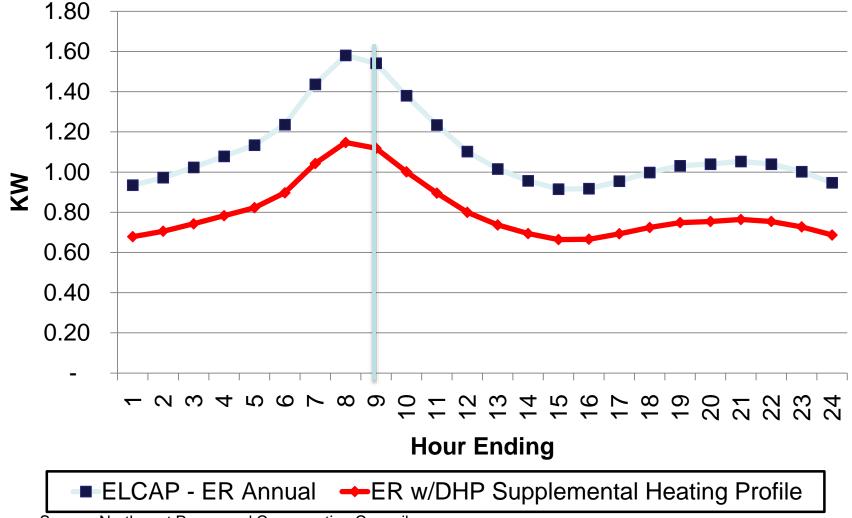
Indoor Temperature (This Study) – Heating Set Point (RTF Model)
Heating Set Point (This Study)

Variable Capacity Heat Pumps

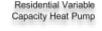
Ductless Heat Pump:

- Manufactured Homes
- Forced Air homes
- **Cold Climates**

Residential Variable Capacity Heat Pump


VRF Systems

Advanced Rooftop Units



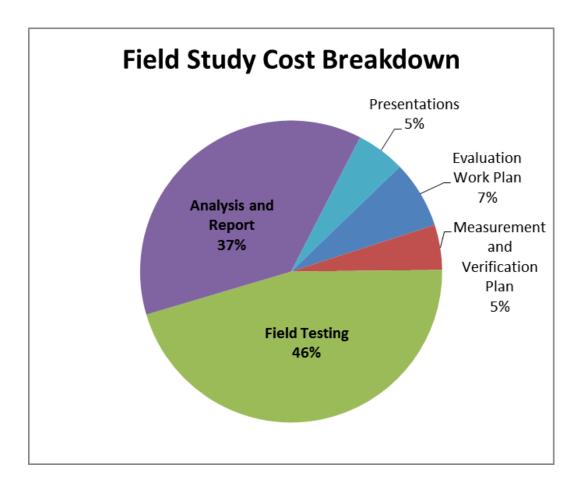
Ductless Heat Pumps Energy and Capacity Benefits

BPA Current and Recent Field and Lab Tests

- Expanded ductless heat pump applications
 - Residential Zonal electric displacement
 - Residential forced air displacement
 - Colder climates
 - Manufactured homes
 - Small Commercial
- Residential variable speed heat pump
 - Lab tests, lab home tests, field tests, modeling (e.g. Carrier Greenspeed)
- Advanced Rooftop Unit (Daikin Rebel, Aaon)
- Multi-family DHW heat pumps
- Next Generation HPWH Development
- **HPWH Demand Response Pilots**

Advanced Rooftop HVAC

Reverse Cycle Chiller For Multi Family



VRF Systems

Typical Field Study of Commercial or Residential Technologies

- \$10,000 \$20,000+ per site
- Requires 30 to 100+ sites
- Typical takes 12-18 months or more to complete

Current Practice for Quantifying Annual Energy Savings of HVAC Equipment

Lab Tests

Provides standard ratings, some performance curves

Field Testing

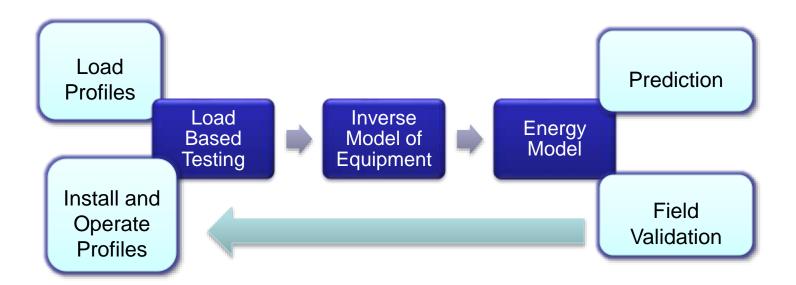
- Includes "real world" variability.
- Expensive and long timelines (Typical \$20k per site of the years)

Analysis and Energy Modeling

- Apply lab and field data to make predictions.
- Approved Basis for Incentives
- EM&V to Validate Energy Savings

VRF Systems

Ductless Heat Pump




New Approach

Test one system in the lab, instead of many of one system in the field

- 1. Load based lab testing
 - Testing total system dynamic response
 - Using full range of independent variables
 - Produce performance maps for energy models
- 2. Better integration of lab/field/modeling

EPRI / BPA / Duke Energy / Southern Company

Energy Efficient Technology Review Trip to Japan Daikin, Mitsubishi, Mayekawa, Sanden April 14-19, 2014

Personal Observations on Japanese HVAC Manufacturers

- Global markets
- Environmental responsibility
- Energy efficiency
- Many international products not available in the US.
- Products must match particular markets.
- Expecting more Japanese HVAC technologies in the US HVAC market.

Some Key Technologies

- Inverter driven heat pumps
- EcoCute Transcritical CO2 Cycle Heat Pump Water Heaters
- Low GWP Refrigerants CO2, R 32, Ammonia
- Innovative Technology
 - Better Compressors and Heat Exchangers
 - Hybrid systems
 - Adaptive control with occupancy and infrared sensors

Products of Interest for EE

- 1. Sanden Eco Cute CO2 residential split-system HPWH
- 2. Residential forced air inverter heat pump (Daikin/Goodman)
- 3. Commercial/Industrial Eco Cute (air-to-air, and waterto-water)
- 4. Mitsubishi Hyper Heat (100% Capacity 5 degrees F)
- 5. Packaged Ammonia/CO2 Supermarket Refrigeration
- 6. Hybrid VRF / water loop fan coil
- 7. CO2 refrigerant grocery display case
- 8. Residential DHW / DHP combo unit
- 9. Ammonia Heat Pump for commercial applications

2015

Conclusions

- 1. Promising New Technologies for energy efficiency:
 - Smart Connected Devices
 - Variable Capacity HVAC
- 2. Smart Connected Devices M&V approach:
 - Self-reported data for performance verification
- 3. Variable Capacity Heat Pumps M&V approach:
 - Load-based testing with better integration of lab/model/ field tests.

Contact Info

Jack Callahan, P.E., CEM, CMVP Senior Engineer Bonneville Power Administration jmcallahan@bpa.gov 503-230-4496 www.bpa.gov/energy/n/emerging_technology/ www.e3tnw.org

